Data on the labor-market experience of male high school dropouts.

Format

A data frame with 6402 observations on the following 15 variables.

id

respondent id - a factor with 888 levels.

lnw

natural log of wages expressed in 1990 dollars.

exper

years of experience in the work force

ged

equals 1 if respondent has obtained a GED as of the time of survey, 0 otherwise

postexp

labor force participation since obtaining a GED (in years) - before a GED is earned postexp = 0, and on the day a GED is earned postexp = 0

black

factor - equals 1 if subject is black, 0 otherwise

hispanic

factor - equals 1 if subject is hispanic, 0 otherwise

hgc

highest grade completed - takes integers 6 through 12

hgc.9

hgc - 9, a centered version of hgc

uerate

local area unemployment rate for that year

ue.7

ue.centert1

ue.mean

ue.person.cen

ue1

Source

These data are originally from the 1979 National Longitudinal Survey on Youth (NLSY79) that can be found here https://www.bls.gov/nls/nlsy79.htm.

Singer and Willett (2003) used these data for examples in chapter (insert info. here) and the data sets used can be found on the UCLA Statistical Computing website: https://stats.idre.ucla.edu/other/examples/alda/

Additionally the data were discussed by Cook and Swayne (2003) and the data can be found on the GGobi website: http://ggobi.org/book.html.

References

Singer, J. D. and Willett, J. B. (2003), Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence, New York: Oxford University Press.

Cook, D. and Swayne, D. F. (2007), Interactive and Dynamic Graphics for Data Analysis with R and GGobi, Springer.

Examples

str(wages)
#> 'data.frame': 6402 obs. of 15 variables: #> $ id : Factor w/ 888 levels "31","36","53",..: 1 1 1 1 1 1 1 1 2 2 ... #> $ lnw : num 1.49 1.43 1.47 1.75 1.93 ... #> $ exper : num 0.015 0.715 1.734 2.773 3.927 ... #> $ ged : int 1 1 1 1 1 1 1 1 1 1 ... #> $ postexp : num 0.015 0.715 1.734 2.773 3.927 ... #> $ black : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ... #> $ hispanic : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 1 1 ... #> $ hgc : int 8 8 8 8 8 8 8 8 9 9 ... #> $ hgc.9 : int -1 -1 -1 -1 -1 -1 -1 -1 0 0 ... #> $ uerate : num 3.21 3.21 3.21 3.3 2.89 2.49 2.6 4.8 4.89 7.4 ... #> $ ue.7 : num -3.79 -3.79 -3.79 -3.71 -4.11 ... #> $ ue.centert1 : num 0 0 0 0.08 -0.32 ... #> $ ue.mean : num 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 5.1 5.1 ... #> $ ue.person.cen: num 0 0 0 0.08 -0.32 ... #> $ ue1 : num 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 4.89 4.89 ...
summary(wages)
#> id lnw exper ged #> 1204 : 13 Min. :0.708 Min. : 0.001 Min. :0.0000 #> 3440 : 13 1st Qu.:1.591 1st Qu.: 1.609 1st Qu.:0.0000 #> 7373 : 13 Median :1.842 Median : 3.451 Median :0.0000 #> 9968 : 13 Mean :1.897 Mean : 3.957 Mean :0.2719 #> 10392 : 13 3rd Qu.:2.140 3rd Qu.: 5.949 3rd Qu.:1.0000 #> 12043 : 13 Max. :4.304 Max. :12.700 Max. :1.0000 #> (Other):6324 #> postexp black hispanic hgc hgc.9 #> Min. : 0.0000 0:4783 0:4859 Min. : 6.000 Min. :-3.00000 #> 1st Qu.: 0.0000 1:1619 1:1543 1st Qu.: 8.000 1st Qu.:-1.00000 #> Median : 0.0000 Median : 9.000 Median : 0.00000 #> Mean : 0.9076 Mean : 8.948 Mean :-0.05248 #> 3rd Qu.: 0.1168 3rd Qu.:10.000 3rd Qu.: 1.00000 #> Max. :12.2600 Max. :12.000 Max. : 3.00000 #> #> uerate ue.7 ue.centert1 ue.mean #> Min. : 1.790 Min. :-5.2050 Min. :-15.310 Min. : 2.890 #> 1st Qu.: 5.390 1st Qu.:-1.6050 1st Qu.: -2.900 1st Qu.: 6.070 #> Median : 7.000 Median : 0.0000 Median : -0.500 Median : 7.150 #> Mean : 7.733 Mean : 0.7297 Mean : -1.015 Mean : 7.734 #> 3rd Qu.: 9.400 3rd Qu.: 2.3000 3rd Qu.: 0.600 3rd Qu.: 8.650 #> Max. :23.700 Max. :16.7050 Max. : 13.005 Max. :17.130 #> NA's :402 NA's :406 #> ue.person.cen ue1 #> Min. :-8.403000 Min. : 2.890 #> 1st Qu.:-1.350500 1st Qu.: 6.200 #> Median :-0.142000 Median : 8.300 #> Mean :-0.000011 Mean : 8.762 #> 3rd Qu.: 1.133000 3rd Qu.:10.200 #> Max. :13.421000 Max. :23.700 #>
if (FALSE) { library(lme4) lmer(lnw ~ exper + (exper | id), data = wages) }